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Abstract—According to research on super-resolution (SR),
SR image reconstruction using generated anti-networks can
produce images that are more realistic than using convolutional
neural networks. At present, SR technology based on convo-
lutional neural networks ignores the impact of loss function
on image reconstruction; the results lack detail and accuracy.
In this paper, we use SR method and combine Generative
Adversarial Networks to design a super-resolution (Lapras-
GAN) model of the enhanced loss function. The proposed
enhancement loss function is a Mix loss function that combines
the multiscale SSIM and L1 loss functions to obtain realistic
images. We performed qualitative and quantitative analysis of
the performance of different loss functions and demonstrated
the advantages of the Mix loss function. In addition, the neural
network is accelerated by multiple GPUs of multiple nodes,
which can be 3-4 times faster than a single node single GPU.
Experimental results show that the proposed Lapras-GAN
method can generate images consistent with images produced
by human perception. Further comparisons show that our
Lapras-GAN has excellent performance and test time in the
PIRM2018 experimental test data set. Finally, we obtained
a perception index of 1.83 and a test time of 0.031s in the
PIRM2018 competition test set.

Keywords-Deep Learning, Generative Adversarial Networks,
Loss Function, GPU, Single Image Super Resolution

I. INTRODUCTION

Super resolution (SR) refers to the technique of recovering

high-resolution (HR) images from low-resolution (LR) or

sequential images. Single-image SR (SISR) reconstruction

technology is widely used in hyperspectral imaging, medical

imaging, satellite remote sensing, and other fields.

Traditional SISR methods include interpolation-based,

reco- nstruction-based, and learning methods that learn ei-

ther the potential internal similarities of the same image or

the mapping functions of external LR and HR sample pairs.

Due to the recent breakthroughs in deep learning in other

computer vision fields, several researchers have attempted to

construct deep networks to conduct end-to-end training and

introduce deep neural networks to solve the problem of SR

image reconstruction.

Commonly used deep learning models can be divided into

models based on interpolation preprocessing, original image

processing, hierarchical features, and high-frequency details

of image input information. However, advanced methods are

based on a single-loss function, and SR image reconstruc-

tion methods employing the Mix loss function are rarely

studied. We propose an enhanced loss function network for

the proposed SR (enhanced loss function network for SR;

Lapras-GAN) method that combines the L1 and multi-scale

structural similarity index (MS-SSIM) loss functions.

Most traditional SR methods use the L2 loss function

[1]–[3] for loss calculation because different depth learning

frameworks provide the L2 loss function method, and the

theoretical results obtained using this function are generally

good. When SSIM evaluates the image quality, a certain

correlation between the human perception system and the

local structure of the image is indicated. Some studies have

shown that the local quality of an image has a certain relation

with the distance between the image and the human body.

Therefore, MS-SSIM [4] has been proposed to address these

problems, and SSIM is calculated and weighted based on

perceptions of the image by the human eye at different

scales. In this work, we combine the MS-SSIM and L1 loss

functions as a Mix loss function to design an SR model

and enhance the final loss function. We conduct generative

adversarial net (GAN) optimization and post-process the

generated images. Our contributions can be summarized as

follows:

(1) We apply the Mix loss function [5] to the GAN model

for image super-resolution reconstruction and discuss

its feasibility. To the best of our knowledge, this is the

first attempt in the single-image super-resolution field.

(2) The enhanced SR GAN (SRGAN) is modified and a

larger HR patch is used to supplement the details of

the Lapras-GAN input image block. Experiments have

shown that larger HR patches can be used to extract

larger image features.

559

2019 IEEE Intl Conf on Parallel & Distributed Processing with Applications, Big Data & Cloud Computing, Sustainable
Computing & Communications, Social Computing & Networking (ISPA/BDCloud/SocialCom/SustainCom)

978-1-7281-4328-6/19/$31.00 ©2019 IEEE
DOI 10.1109/ISPA-BDCloud-SustainCom-SocialCom48970.2019.00085

Authorized licensed use limited to: Tsinghua University. Downloaded on June 04,2022 at 17:14:00 UTC from IEEE Xplore.  Restrictions apply. 



(3) A multi-node parallel processing method for SR images

generated by Lapras-GAN is implemented. Accelerate

image super-resolution training time by using multiple

GPU computing resources for multiple nodes.

II. RELATED MODEL

Deep learning has achieved good results in solving com-

puter vision problems. This article focuses on solving image

SR problems through deep learning. In this section, we

briefly review several current key points on SR.

Secondly, in the process of using the generated anti-

network training, a large number of GPUs are also needed

for acceleration. Among them, Meng et al. [6] proposed how

to train a deeper model through GPU memory optimization

on Tensorflow. Since the training of deep learning is per-

formed at the nodes of the cluster, Zhang et al. [7] propose

an efficient communication architecture for distributed deep

learning of multi-GPU clusters. Specific distributed deep

learning training will be introduced in model optimization.

The mainstream methods used for SR image reconstruc-

tion based on convolutional neural networks [8], include SR

convolutional neural network (SRCNN) [9], sparse coding

network (SCN) [10], very deep SR (VDSR) [11], deeply

recursive convolutional network [12] and fast SRCNN [13].

Although all of these methods produce good image SR

effects, the CNN and RNN based methods learn the mapping

features of LR images to SR images from LR image interpo-

lation, resulting in smoother images and lack of details and

texture of the original image; unpleasant artifacts may also

occur in deeper neural networks. The perceptual and content

losses proposed by GANs can solve the problems generated

by CNN and RNN so that the obtained SR image conforms

better to that of the human perception system in terms of

detail and texture. The SRGAN [14] proposed by Ledig et

al. solves the shortcomings of the results of conventional and

deep learning methods, which generally lack high-frequency

information and details. In Section III, we explain how we

use GANs in detail.

III. METHOD

SRGAN [14] is the first model proposed to improve

the task of using the GAN network to solve image super-

resolution. As mentioned earlier, the magnified image of SR-

GAN is often accompanied by unpleasant artifacts. There-

fore, our proposed Lapras-GAN model draws on the SR-

GAN model to improve the quality of the generated image.

A. Innovation of Method

First, we use a GAN [8] as the basic framework for

Lapras-GAN. The use of GAN for SR addresses the short-

coming of a lack of high-frequency information and detail

in the results of traditional methods, including deep learning

methods. Textures may be relatively simple, but they always

have great detail, the visual feel is better, and the details are

rich.
Compared with SRGAN [14], Lapras-GAN presents some

innovations in the GAN model. The original GAN frame-

work is changed to RaGAN (relativistic average GAN) [15]

because the discriminator should also reduce the probability

that ”the actual data are true” and increase the probability of

”the pseudo-data are true” to determine whether the image

is more realistic than others rather than whether the image

is true or false. RaGAN also helps learn sharper edges and

finer textures.
Lapras-GAN removes the batch normalization [16] layer

from SRGAN to achieve consistent performance without ar-

tifacts. It does not degrade performance but saves computing

resources and memory usage. Models with batch normaliza-

tion layers are likely to introduce unpleasant artifacts.
In the Lapras-GAN generation network section, SRRes-

Net [14] is used as the basic network architecture. By calcu-

lating most of the calculations to obtain the eigenvalues of

the LR image, the amount of calculation required to produce

image feature values is reduced, thereby accelerating the

training time of the SR model. As shown in Fig. 1, each

residual block contains two 3x3 convolutional layers. After

the convolutional layer, PReLU acts as an activation function

and uses two 2x sub-pixel convolution layers [17] to increase

the feature size.

Figure 1. SRResNet uses Parametric ReLU to help it adaptively learn
some of the negative coefficients; SRResNet uses a sub-pixel convolutional
layer for image upsampling.

Sub-pixel convolution layers are also used for upsampling

in the generation network. As shown in Fig. 2, the types of

layers included in each module of the discrimination network

include a convolution layer, a Leaky ReLU layer, and a

Batch Normalization layer.

Figure 2. We use the VGG19 network to link two fully connected layers,
the Leaky ReLU function and the Sigmoid function. The network is finally
used as the discriminant network of the Lapras-GAN.
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IV. OPTIMIZING DIRECTION

As research on computer version is basically related to

images, the optimization direction should be adjusted around

the relevant parameters of the image. Optimization of the

structure of the neural network is also necessary. In this

section, we introduce the optimization direction for Lapras-

GAN.

A. HR patch-size

We have found through extensive experimentation that

using larger patch sizes can achieve better image quality

when training deep neural networks, because the expanded

image sensing range can help deep neural networks capture

more useful image information. We changed the HR patch-

size to 128x128 and 192x192 on the basis of 10 and 23

RRDB models, respectively, and used the same training set

(Urban100) for training. The results are shown in Figs. 3 and

4. Two neural networks of different depths were observed

to achieve good image quality with large patch sizes.

Figure 3. The number of RRDBs is 10 different patch-size renderings.

Figure 4. The number of RRDBs is 23 different patch-size renderings.

B. Loss function

The loss function is the basis for judging the predictions

of the neural network. The following mainly explains the

L1, L2, and Mix loss functions used in Lapras-GAN. The

L1 loss function considers the sum of the absolute values of

the difference between the target variable and the predicted

value. Therefore, to achieve image quality that is better than

that of human perception, we combine L1 and SSIM to

obtain the Mix loss function. Equation (1) shows the SSIM

loss function.

LSSIM (P ) = 1− SSIM(p̃) (1)

The MS-SSIM method [4] is proposed to combine image

details under different resolutions and observation conditions

into a quality evaluation algorithm. Equation (2) reveals the

MS-SSIM loss function.

LMS−SSIM (P ) = 1−MS − SSIM(p̃) (2)

MS-SSIM and SSIM are not particularly sensitive to

uniform deviations, which can result in brightness changes

or color shifts. L1 preserves the weighting error of color and

brightness regardless of the local structure, but it does not

produce exactly the same contrast as MS-SSIM. The Mix

loss function [5] is obtained by combining MS-SSIM and

L1, as proposed by Hang Zhao et al. Equation (3) describes

the Mix loss function. We will test it in the subsequent

experiments section.

LMix = αLMS−SSIM + (1− α)GσM
G
Ll1 (3)

C. Distributed computing

We use Pytorch’s distributed computing approach to

divide small batches into smaller samples and run each

smaller batch of samples in parallel. We run the adjusted

parameters and structure of Lapras-GAN on a card and do

not join the Pytorch parallelization module. Then, we use

torch.nn.DataParallel in Pytorch for data parallelism, which

can be parallelized on multiple GPUs in a batch dimension.

Pytorch’s current recommendation is a multi-process single

GPU implemented using torch.nn.DistributedDataParallel.

In this work, we consider a single-process single GPU, a

multi-process single GPU, and a multi-process multi-GPU

(notably, the cluster node currently only has two graphics

cards). Table 2 shows the times we calculated using Lapras-

GAN for the same data size. The training time obtained

using multiple GPUs and multiple processes is much smaller

than that obtained using a single GPU single process.

Table I
LAPRAS-GAN TRAINING TIME RESULTS OF DIFFERENT TRAINING

METHODS.

Result
Single-process

single-GPU
Multi-process
single GPU

Multi-process
multi-GPU

Time(h) 300.96 195.6 125.04
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The training time results demonstrate that better perfor-

mance is obtained under a multi-process multi-GPU setup

by using distributed computing because, in the case of

multi-processing, full use of the computing performance

of each GPU can be made to achieve the fastest training

time. We also consider whether the training time can be

further shortened in the case of multi-process multi-GPU

between multiple nodes. However, because our cluster does

not include a large number GPUs, it cannot verify the

proposed multi-level multi-GPU.

V. EXPERIMENT

In this section, we illustrate the dataset and hyperpa-

rameters of our model training. Then, we compare our

optimized Lapras-GAN with several other models using

multiple benchmark datasets.

A. Data set

First, we used the DIV2K and Flickr datasets to obtain

a total in 3,450 2K images for training dataset selection.

We enriched the training set by merging these datasets. We

used Set5, Set14, Urban100 [18], and the dataset provided

in PIRM 2018 [19] for verification.

B. Training details

The SR image is calculated under the scale factor of x4.

Thus, we used Matlab to downsample the HR image and

obtain the LR image. The generation network of the Lapras-

GAN model is SRResNet, the structure is Conv-Activate,

and the RRDB is set to 23. Through experiments, we found

that more RRDBs yield clearer textures; unfortunately, more

time is needed to complete the training. Thus, we selected 23

RRDB modules to achieve the fastest training time without

affecting the results. A large HR patch-size can force the

model to learn richer image feature information, but it will

also cause the training speed to become too slow. Thus, we

chose a relatively large HR patch-size of 192x192 and a

multi-process multi-GPU to speed up the training time.

We used the Pytorch framework to implement our Lapras-

GAN method in this SR experiment and six NVIDIA Tesla

V100 Tensor Cores for training.

C. Experimental results

We performed SR reconstruction of a baseline dataset

using the EDSR model optimized for PSNR and WDSR [20]

and the SRGAN, ESRGAN, and Lapras-GAN models for

vision system optimization. In addition, because no standard

for evaluating image quality currently exists, we chose

the PIRM official calculation indicators, PI, and RMSE

to determine quality. Fig. 7 shows the results of different

models on the same picture.

As can be seen in Fig. 5, in contrast to these techniques,

our method produces a visually pleasing SR image that is

similar to a real image without much noise or smooth image

details and textures.

Figure 5. Qualitative results of Lapras-GAN. Lapras-GAN produces
realistic textures and details. Although SRGAN can achieve very low
perceptual indices, it also produces many unrealistic artifacts.

Fig. 5 reveals that Lapras-GAN optimized from SRGAN

will be better in texture and detail than SRGAN and other

models. From the different results obtained from image 232,

we can see that the results processed in SRGAN and Lapras-

GAN have clearer textures and details than the results

of the other models. The GAN-based SR reconstruction

model generates x4 SR images but often produces unnatural

textures and noise that does not conform to the vision

system. CNN-based models (EDSR, WDSR) yield image

details that are often too smooth and lack realism of detail

because they focus on PSNR optimization. To verify the

effect of Lapras-GAN, we applied it to different test sets

and show the results in Table 3.

We calculated the test times for different models in the

same hardware, as shown in Table 4. We calculated the test

times for different models and observed that the Lapras-

GAN method we designed presents a certain advantage in

terms of computational performance and speed under the

same hardware configuration, mainly because we use a large

HR patch and a skip connection to deepen our network and

stabilize training.Since we used skip connections to get a

larger receptive field, we reduced the number of discriminant

network layers of Lapras-GAN and accelerated the test speed

without changing the image quality. After removal of the

batch normalization layer, training can save about 40% of
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Table II
RESULTS OF DIFFERENT SR MODELS.

Model Training Set Valid Set Test Set Perceptual Index RMSE
ESRGAN DIV2K DIV2K PIRM 2.1383 14.2212

Lapras-GAN DF2K DIV2K PIRM 1.8671 16.884
WDSR A DIV2K Urban100+Set5 PIRM 3.8012 14.4879

RDN DIV2K Set5 Urban100 4.3211 14.974
EDSR NONE NONE PIRM 4.9035 10.7299

the space to speed up the test time.

Table III
THE TIME IT TAKES FOR DIFFERENT MODELS TO PERFORM

SUPER-RESOLUTION TESTING ON A SINGLE IMAGE AND 100 IMAGES.

Model Single Image 100 Images
EDSR 0.144s 13.123s
WDSR 0.102s 9.832s
SRGAN 0.152s 14.853s

ESRGAN 0.098s 8.365s
Lapras-GAN 0.031s 4.421s

By analyzing the experimental results, it can be found that

the GAN model produces over-interpreted image textures

and details when generating SR images, which leads that the

perception index of the images is increased (the lower the

index value, the better the image quality). We use the back

projection method to post-process the SR images. The back

projection method records the pixel fit of given images as a

distribution of pixels in the histogram model. By combining

it with the SR images, we have improved the back projection

method. First, the result of the deep learning model is

downsampled by x4 to obtain an image with the same

resolution as the LR image. The pixel-by-pixel comparison

with the LR image is then used to eliminate the details and

textures produced by over-learning of the model. Finally,

by up-sampling the processed result, the image generated

by the model is reconstructed twice to generate a back-

projected SR image. Figure 6 shows the results obtained

by back projection.

Figure 6. The back projection method can eliminate the texture and details
generated by GAN over-improvement to improve image perception quality.

We conducted several experiments and concluded that the

above results are consistent. The use of GAN provides richer

details and textures for the generated SR images, but it

also introduces so much noise that the RMSE results are

relatively large. Using the improved back projection method

to post-process the results, we obtained more natural details

without introducing too much noise. Therefore, in this

paper, we use back projection as an image post-processing

operation.

D. Loss Function

In the SISR method, the mainstream method for evaluat-

ing image quality is still PSNR and SSIM. As mentioned

above in the third account, these methods do not conform

well to human perception systems. Here, we used the Mix

loss function instead of the L1 loss function only because

MS-SSIM shows the contrast of images well while L1

addresses issues related to color and brightness. The Fig.

7 below shows the experimental result we obtained for

different loss functions.

Figure 7. The experimental results of different loss functions, through
the perceptual index, can prove that the use of the Mix loss function can
restore more natural image details and textures.

The experimental results show that the PI obtained using

the L1 loss function is smaller than those obtained from L2

and SSIM; in addition, the brightness of the picture tested

by MS-SSIM is better than that produced by other methods.

Experimental results further show that the PI obtained by

using the Mix loss function is better than that provided by

other functions.

To prove that our Lapras-GAN method is also suitable

for LR images taken in natural conditions, we used the

CameraSR [21] dataset and an LR image taken by an iPhone
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Figure 8. Low-resolution image processing results for natural shots
using different loss functions. The results of L2 and SSIM processing are
ambiguous and lack detail, while those of L1 and MS-SSIM recover some
of the image details.

X as the test set. Fig. 8 shows the results obtained using

Lapras-GAN with different loss functions.

The experimental results confirm that the loss function

has a positive effect on the LR image reconstruction of

the focal length imaging of an optical lens. According to

the experimental results, the L1, MS-SSIM, and Mix loss

functions can better restore image details and texture. The

Mix loss function combines the advantages of the L1 and

MS-SSIM loss functions, and the restored SR images show

brightness, contrast, and structures consistent with those of

LR images; greater image details are also captured.

In addition, we conducted some researches on texture loss

and content loss, and optimized the feature loss and content

loss of the SRGAN model generation network. According to

the experimental result, it is found that the application of the

Mix loss function to calculate the feature loss and content

loss is more accurate, and the generated image has richer

texture and detail. In this case, we compared the performance

of each network model and introduced the combinations of

different loss functions concretely in Table 5. Where L1

represents the L1 loss function, LP is the perceptual loss,

Mix is the Mixed loss function, and LA is the counter loss.

The Fig. 9 below shows the results of a comparison of

different tests on loss function.

The calculation method of perceptual loss and adversarial

loss is Equation 4 and Equation 5. Equation 4 is the

perceived loss of the Lapras-GAN model. Where Φ is the

calculation function of the feature map. Equation 5 is the

adversarial loss calculation method for the Lapras-GAN

model. Where D is the discriminating network and G is the

Table IV
TRAIN THE SAME NETWORK WITH DIFFERENT LOSS FUNCTIONS.

Networks Loss Function Description
Lapras-GAN-L1 L1 Only L1 Function
Lapras-GAN-P Mix Mix Loss Function
Lapras-GAN-LP L1 + LP L1 + Perceptual
Lapras-GAN-MP Mix + LP Mix + Perceptual
Lapras-GAN-LPA L1 + LP + LA Lapras-GAN-LP + Adversarial
Lapras-GAN-MPA Mix + LP + LA Lapras-GAN-MP + Adversarial

generating network.

LP = ‖Φ(IGT )− Φ(IHR)‖22 (4)

LA = − log10 (D(G(x))) (5)

This experiment performed different super-resolution re-

constructions on images from Urban100 at 4x magnification.

The results of the Lapras-GAN-P appear to be clearer than

the Lapras-GAN-L1 texture, but they all appear blurry.

The image produced by Lapras-GAN-MP is very clear but

partially blurred. It is found that Lapras-GAN-MPA can

generate richer textures, making the resulting image more

accordant with the original HR image.

VI. SUMMARY

We studied several excellent SISR models proposed in

recent years and compared their respective characteristics.

To the best of our knowledge, this is the first application of

the single-image super-resolution of the Mix loss function

in the GAN model. Through extensive research, we found

that using the hybrid loss function has a positive impact

on image recovery. We designed an Lapras-GAN method

that produces images with more natural detail and texture

than those obtained from previous SR models. We developed

a basic structure of Lapras-GAN based on SRGAN and

introduced different optimization directions for the Lapras-

GAN model. We focused on the effect of the loss function on

the SR image and are more realistic for the generator to use

the blended-loss function than the image generated by the

single-loss function. Finally, experiments were conducted on

simulated and real LR datasets. The experimental results

show that Lapras-GAN can produce better SR images for

natural focal length and analog images and exceeds the

results of SR models with simulated LR images.

ACKNOWLEDGEMENT

The authors are grateful to the reviewers for valuable

comments that have greatly improved the paper. This pa-

per is partially supported by the national Natural Science

Foundation of China (No.61762074,No.61962051), National

Natural Science Foundation of Qinghai Province (No.2019-

ZJ-7034).”Qinghai Province High-end Innovative Thousand

Talents Program - Leading Talents” Project Support. The

Open Project of State Key Laboratory of Plateau Ecology

and Agriculture, Qinghai University (2020-ZZ-03). National

564

Authorized licensed use limited to: Tsinghua University. Downloaded on June 04,2022 at 17:14:00 UTC from IEEE Xplore.  Restrictions apply. 



Figure 9. Compare the results of the different loss combinations of the Lapras-GAN model.
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