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Abstract: Image super-resolution reconstruction refers to a technique of recovering a high-resolution (HR) image (or multiple
images) from a low-resolution (LR) degraded image (or multiple images). Due to the breakthrough progress in deep learning in
other computer vision tasks, people try to introduce deep neural network and solve the problem of image super-resolution
reconstruction by constructing a deep-level network for end-to-end training. The currently used deep learning models can divide
the SISR model into four types: interpolation-based preprocessing-based model, original image processing based model,
hierarchical feature-based model, and high-frequency detail-based model, or shared the network model. The current challenges
for super-resolution reconstruction are mainly reflected in the actual application process, such as encountering an unknown
scaling factor, losing paired LR–HR images, and so on.

1௑Introduction
Before the advent of deep learning-based methods, image super-
resolution reconstruction mostly used methods based on
interpolation and regularisation. Image interpolation is an imaging
method that increases the number of image pixels. It is a process of
estimating the pixel value of a particular position between image
pixels [1]. Image interpolation generates high-resolution (HR)
images by up-sampling low-resolution (LR) images [2]. On the
other hand, since image super-resolution reconstruction is an ill-
posed problem, regularisation is widely used as a method to solve
the ill-posed problem [3]. In recent years, the application of image
super-resolution reconstruction in various fields has received
increasing attention, and many models based on deep neural
network have achieved excellent results [4]. Since super-resolution
convolutional neural network (SRCNN) was put forward, many
convolutional neural network (CNN)-based network models have
been born. At the same time, due to the proposed residual network,
the deep model can be effectively prevented from disappearing [5],
so that the deeper CNN model can improve the performance of
super-resolution better. Dual-state recurrent network (DSRN) [6] is
an improvement based on recursive neural network (RNN)). DSRN
can perform super-resolution reconstruction at different spatial
resolutions, with higher performance than DenseNet and ResNet.
Seif and Androutsos[7] proposed to use the one-dimensional
separable filter and Atrous conv to achieve the performance of
conventional conv for parameters that have been parameterised in
deep network, achieving the same performance using fewer conv
layers. EDSR [8] removes the batch normalisation layer in the
residual block based on SRResNet [9], saving memory resources to
stack more network layers under the same computing resources or
extract more features in each layer, so that the quality of the image
is improved. Wide deep super resolution (WDSR) [10] removes
most of the redundant convolutional layers based on EDSR, which
reduces memory and increases computational speed. Zhang et al.
[11] proposed a new residual-dense network (RDN), which uses
residual-dense blocks (RDBs) to connect to my richer local
features. Cascading residual network (CARN) [12] is a cascaded
residual network that achieves better performance with fewer
parameters and operands. RefSR [13] proposed an end-to-end CNN
based on the idea of ‘warping + synthesis’, using MDSR as a sub-
module for LR image feature extraction and RefSR synthesis.

Zhang et al. [14] proposed a very deep residual channel attention
network (RCAN) to solve the difficulty of training deep network,
which can adaptively re-adjust the characteristics of the channel
mode by considering the interdependencies between channels.

For the first time, super-resolution generative adversarial
network (SRGAN) [9] applied generative adversarial network
(GAN) to the field of super-resolution reconstruction and proposed
a perceptual loss function instead of the mean square error (MSE)
loss function. The 4 × down-sampled super-resolution images
reconstructed has been achieved, and the obtained images have
more detailed details and texture. Enhanced SRGAN (ESRGAN)
removed the BN layer based on SRGAN and eliminated artefacts
in the original model results. Wang et al. [15] proposed a method
that is gradual in both network structure and training. Its network
structure is an asymmetric pyramid structure that not only reduces
memory consumption, but also enhances the receiving field
concerning the original image. Therefore, it can maintain high
efficiency while achieving a higher up-sampling rate.

At present, there are many technical and application challenges
using deep learning to solve super-resolution reconstruction. For
instance, images in practical applications often encounter unknown
ambiguities such as camera noise [16–18], human factors [19], and
motion blur. Therefore, the models trained on artificially
constructed data sets tend to perform poorly in real-world data sets.
Many researchers now have proposed several ways to solve this
problem (e.g. Camera-SR [20], Dual CNN [21], NatSR [22],
KMSR [23]). However, these methods have some congenital
defects, such as difficulty in training and better effect on artificial
data sets. In addition, super-resolution can be applied not only
directly to specific areas of data and scenes, but also to other visual
tasks. Therefore, it is also a challenge to apply SR to more specific
areas, such as video surveillance [24–26], face recognition [27–29],
target tracking [30–32], medical imaging [33, 34] and so on. At the
same time, since most SR models currently perform SR with a
fixed amplification factor while we often use SR with arbitrary
scale factor in practical applications, the development of a single
model with multi-scale super-resolution is also a potential
development direction, such as Meta-SR [35], but it is not easy to
achieve the quality of a single fixed-factor SR model.

Here are some classic models and methods. This paper is
organised as follows: Section 2 provides an overview of HR and
LR images. Section 3 introduces several evaluation indicators for
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image super-resolution work. Section 4 introduces traditional
methods in the field of image processing. In Sections 5 anf 6
outline the work of CNN networks in the field of image super-
resolution and describes the work of GAN in the area of image
super-resolution. In Section 7, some models are selected for
comparison, and Section 8 is summarised the paper.

2௑Super-resolution image overview
At present, the process of image acquisition and processing is often
affected by many factors, such as image blurring, image
downsampling, etc., resulting in the acquired image not meeting
subsequent processing to achieve the desired index. The low-
quality image obtained here is called a low-resolution image (LR
image).

For single-image super-resolution (SISR) tasks, we often need a
large number of LR images to learn how to map to super-resolution
images. Most researchers usually downsample to obtain a LR
image of the original image. This method mainly reduces the
spatial resolution of the image by sampling the original image. The
process of image downsampling belongs to the process of
irreversible information loss. Therefore, if the downsampling ratio
is too large, it will cause severe distortion of the image. Recently,
there have been new methods for acquiring LR images. Chang
Chen et al. proposed a LR image of a camera lens. A conventional
camera captured a HR image of a set of LR images. Training on
this dataset can better handle the recovery of the original LR
images. Fig. 1 is a flowchart of obtaining a LR image. Equation (1)
for obtaining an LR image is defined as, where D() stands for the
downsampling operation, and n represents the image noise.

LR = D(HR, scale) + n (1)

The LR image obtained from the original image becomes an
image down-sampling. In contrast, an image generated by passing
a LR image through a super-resolution model is called a super-
resolution image (SR image). Because the image down-sampling
process is a morbid process, LR images and original images often
cannot correspond one to one. Therefore, it is necessary to use the
deep learning model to mine the prior knowledge of the image and
use the prior knowledge of the image to build a mathematical
model for image restoration, to recover the texture information and
edge information of the LR image.

3௑Evaluation index
In recent years, image processing technology has become popular
increasingly, since image quality has had a lot of influence in many
research fields, such as medical images and satellite imaging.
Consequently, the evaluation method of image processing
technology has also become an emerging research direction [36].
According to whether human is involved, we can divide image
quality evaluation methods into two categories: subjective
evaluation and objective evaluation. The evaluator of subjective
evaluation is human, which can truly reflect human visual
perception. The objective evaluation method uses a mathematical
model to reflect the visual perception of the human eye and gives
numerical results of the evaluation. At present, the mainstream
objective evaluation methods mainly include peak-signal-to-noise
ratio (PSNR), SSIM, Perceptual index (PI) and root MSE(RMSE),
which will be introduced in turn.

3.1 PSNR

The PSNR [37] is a mathematical method based on image pixel
statistics. It uses statistical methods to measure the quality of the
resulting image by calculating the difference between the greyscale
values of the pixels of the resulting image corresponding to the
original image.

Equation (2) is the calculation formula of PSNR, F refers to the
resulting image, R refers to the original image, and their sizes are
both M × N. Where the M stands for the image height, N refers to
the image width.

PSNR = 10log10

2552

1
MN

∑i = 1
M ∑i = 1

N
R i, j − F i, j

2 (2)

The larger the PSNR value, the smaller the difference between
the resulting image and the original image, which means the better
the image quality. This method is relatively simple and easy to
implement and has full applications in the fields of image
denoising and image super-resolution. However, since the PSNR is
based on the global statistics of image pixel values, the local visual
factors of the human eye are not considered. As for human eyes,
the sensitivity to different regions is different, and the perception
result of a specific area is also affected by the surrounding
neighbouring areas, so the evaluation results of PSRN may have
deviated from the perception of the human eye.

3.2 Structural similarity (SSIM)

Considering the high structure of natural images, there is a strong
correlation between their pixels, which often carries essential
information about the structure of the object. While the human
visual system mainly acquires structural information from the
visible region, so it is feasible to perceive the approximate
knowledge information of the image distortion by detecting the
deterioration of the structural information.

The measurement system of SSIM consists of three
measurement modules: brightness, contrast, and structure [38].

First, we use the average grey level to estimate the brightness,
as shown in (3), where the brightness contrast function l(x, y) is a
function of μx, μy. N are the pixels of the image.

μx =
1
N

∑
i = 1

Nxi

(3)

Then, the standard deviation is used to estimate the contrast. As
shown in (4), the contrast function c(x, y) is a function of σx, σy.

σx =
1

N − 1 ∑
i = 1

N

xi − μx
2

1
2

(4)

Next, the structure comparison function S(x,y) is defined as a
function of ( x − μx )/σx, ( x − μy )/σy.

Finally, the complete SSIM function is shown in (5). Among
them, l(x, y) compares brightness, c(x, y) compares contrast, and
s(x, y) compares structure.

S x, y = f l x, y , c(x, y), s(x, y) (5)

The feature statistics of an image are usually unevenly
distributed in the pixel space while the distortion of the image
varies in space. Therefore, in the calculation process of image
quality, the local solution of SSIM is more accurate than the global.
Considering people often only focus on a region of the image in
reality, so local processing is more in line with the characteristics
of the human visual system. Also, the local quality detection of the
image can obtain the mapping matrix of the change of the picture
quality more accurately, so the result can be applied to other
aspects.

3.3 PI

PI is an evaluation criterion for the ECCV2018 workshop
PIRM2018's Perceptual SR Image Reconstruction Challenge [39].
According to the definition of the event organisers

PI =
1
2

10 − Ma + NIQE (6)

Among them, Ma is a non-reference quality indicator applied in
the field of image super-resolution reconstruction, which does not
refer to real images. It designs the types of low-level statistical
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features in the spatial and frequency domains to quantify super-
resolution artefacts, and learning a two-stage regression model to
predict the quality score of SR images.

Natural image quality evaluator (NIQE) [40] is an image quality
evaluation algorithm. It does not need to use the human-rated
distorted images for training. After calculating the localised MSCN
normalised image, part of the image blocks is selected as the
training data according to the local activity. The model parameters
are obtained by fitting the generalised Gaussian model as features,
and the multivariate Gaussian model describes these features. The
image quality is then determined based on the distance between the
image feature model parameters to be evaluated and the pre-
established model parameters in the evaluation process.

The human opinion study verified that the perceptual coefficient
is highly correlated with the rating of human observers and a lower
PI indicates a better perceived quality.

3.4 RMSE

RMSE [41] is a frequently used measure of the differences between
values (sample or population values) predicted by a model or an
estimator and the values observed. The RMSE is very sensitive to
very large or very small errors in a set of measurements, so the
RMSE is a good reflection of the precision of the measurement.
While in actual measurements, the number of observations n is
always finite, and the true value can only be replaced with the most
reliable (best) value.

In the ECCV2018 workshop PIRM2018's Perceptual SR Image
Reconstruction Challenge, the RMSE is defined as the square root
of the MSE of all pixels in all images. Equation (7) is expressed as
follows:

RMSE =
1
M

∑
i = 1

M
1
Ni

∥ Xi
HR − Xi

EST ∥2 (7)

where Xi
HR, Xi

EST are the ith real image and evaluation image,
respectively. Ni is the number of pixels in Xi

HR, and M is the
number of images in the test.

4௑Image super-resolution methods before deep
learning
4.1 Methods based on interpolation

4.1.1 Method based on directional bicubic interpolation
(BI): Among the image super-resolution reconstruction methods
based on interpolation, BI has become a standard method because
of its low complexity and relatively good results. However, it only
interpolates the image edges horizontally and vertically so that the
edges are vulnerable to artefacts. Liu et al. [42] proposed a
directional BI method, which used different methods to interpolate
lost pixels based on local intensity and direction to better preserve
sharp edges and details. The flowchart of this method is shown in
Fig. 2. 

As shown in Fig. 2, the authors first estimated edge strength and
direction from local image gradients and then interpolated in
different ways for strong or weak edges and expectations on
textures. Tσ and T are both thresholds.

4.1.2 Method based on DWT and BI: Kumar and Singh. [43]
proposed a super-resolution technique based on the interpolation of
high-frequency subband images obtained by the discrete wavelet
transform (DWT) and input images. As shown in Fig. 3, the
authors first used DWT to decompose an image into different
subband images, namely low-low (LL), low-high (LH), high-low
(HL), and high-high (HH). Then interpolate high-frequency
subband images and the LR input image. LL is not used because
LL is the LR of the original image and contains less information. It
is worth noting that the input image is interpolated with half the
interpolation factor. Finally, use inverse DWT (IDWT) to combine
all these images to generate a new SR image.

4.2 Methods based on regularisation

4.2.1 Method based on regularisation with stationary gradient
fidelity: Yu et al. [3] proposed a SISR method based on
regularisation with stationary gradient fidelity. The authors use a
stationary fidelity gradient method based on error interpolation to
estimate the smooth gradient of the fidelity term.

As shown in Fig. 4, first define the regularisation energy E(Ih)
used to estimate the best reconstructed HR image, as follows:

E(Ih) = F(Ih) + λ ⋅ R(Ih) (8)

where F(Ih) is fidelity term, which brings the reconstruction result
close to the true value, and R(Ih) is regularisation term used to
overcome the ill-posed problem. In order to find the minimum
value of E(Ih), use the gradient descent method and use (9) to
continuously update the HR image.

Fig. 1௒ Flowchart of LR image acquisition
 

Fig. 2௒ Flowchart of directional BI method
 

Fig. 3௒ Flowchart of DWT and BI method
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Ih = Ih − τ
∂E

∂Ih
(9)

where τ is the time step. The authors believe that when defining the
fidelity term, not only the down-sampled pixels should be
considered, but also the pixels lost during the down-sampling
process, i.e. the HR should be more concerned than the LR, so the
blurred HR image Ih is used to define F( ⋅ ), the equation is as
follows:

F(Ih) = ∥ Ih ⊗ gs − I h ∥2 (10)

where gs is the Gaussian kernel, ⊗ is the convolution operator.
When calculating the gradient of the fidelity term, the equation is
as follows:

∂F

∂Ih
= (Ih ⊗ gs − I h) ⊗ gs (11)

It can be seen from (12) that the gradient of the fidelity term
mainly depends on the error (Ih ⊗ gs − Ih), So the author proposed
to use interpolation to estimate this error, as shown below:

(Ih ⊗ gs − I ∼h ) ≃ Us
b(Ds(Ih ⊗ gs) − Il) (12)

where Us
b( ⋅ ) is a BI, Ds is a down-sampling operator. Where

∂F /∂Ih, use the method of (9) to reconstruct the HR image.
Therefore, (13) can be estimated as follows:

∂F

∂Ih
≃ Us

b(Ds(Ih ⊗ gs) − Il) ⊗ gs (13)

The author named this method as error interpolation fidelity
gradient (EIFG), which uses the difference in pixels after down-
sampling to interpolate the differences in pixels lost during downs-
sampling. The fidelity gradient obtained using this method is more
stationary.

4.2.2 Method based on joint regularisation: Chang et al. [44]
proposed a reconstruction-based single image super-resolution
method by using joint regularisation, which combined group-
residual-based regularisation (GRR) and a ridge-regression-based
regularisation (3R). The flowchart of this method is shown in Fig.
5. 

As shown in Fig. 5, the authors construct the minimisation
problem shown in the following equation to realise the
reconstruction from LR image to HR image.

X = argmin
x

1
2

∥ Y − SHX ∥2
2 + αΨGRR(X) + βΨ3R(X) (14)

where α and β are trade-off parameters, Y and X represent the LR
image and its HR version, H represents the blurring matrix, S
represents the decimation operator. The first term in the above
formula is the fidelity term, and the last two terms are
regularisation terms. Among them, ΨGRR(X) uses the structural
information in the image, and Ψ3R(X) introduces HR information
from the external data set.

ΨGRR(X) is defined as follows:

ΨGRR(X) = ∑
i

∥ Wi ∘ (FiDX − Ei) ∥1 (15)

where Fi represents the matrix which extracts the ith group of
similar patches in the gradient domain, Ei represents the estimation
of the ith group of similar patches in the gradient domain, then
(Fi − DX − Ei) represents the residual of a group of similar patches
in the gradient domain, Wi is a weight matrix used to compensate
the unreliable estimation of the ith group, ∘ is the Hadamard
product. Ψ3R(X) is defined as follows:

Ψ3R(X) = ∑
l

∥ RlBX − PjRlBX ∥1 (16)

where Rl represents the matrix which extracts the feature of the lth
image patch, B represents the feature transformation matrix, Pj is
the projection matrix.

In order to solve the minimisation problem shown in (14), the
authors used split-Bregman method [45] to split it into multiple
sub-problems and solve them one-by-one.

5௑Image SRCNN
5.1 SRCNN

SRCNN [46] is the pioneering work of deep learning applications
in the field of super-resolution reconstruction. SRCNN's structure
is very simple, using only three convolution layers. The network
structure of SRCNN is shown in Fig. 6. 

For a given LR image, it uses the bicubic algorithm to zoom to
the target size firstly and then set the processed image to Y, after
that through the three convolution layers, the following functions
are implemented.

5.1.1 Feature extraction and representation: The patches are
extracted from the LR image and each patch is represented as a
high-dimensional vector. These vectors include a set of
characteristic surfaces equal in number to the dimension of the
vector. The first convolutional layer is expressed by the following
euation:

F1 Y = max 0, W1 × Y + B1 (17)

where W1 and B1 represent filters and offsets, respectively. The size
of W1 is c × f 1 × f 1 × n1, where c is the number of channels in the
input image, f 1 is the channel size of the filter, n1 is the number of

Fig. 4௒ Flowchart of regularisation with stationary gradient fidelity method
 

Fig. 5௒ Flowchart of joint regularisation method
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filters, and B1 is a vector of n1 dimensions, each of which is
associated with the filters.

5.1.2 Non-linear mapping: This operation maps each high-
dimensional vector onto another high-dimensional vector non-
linearly. The vector of each map is conceptually a representation of
a HR patch. These vectors include another set of characteristic
surfaces. The first layer extracts an n1 dimension feature from each
patch. In the second operation, we map each of these n1-
dimensional vectors to an n2-dimensional vector. The second
operation can be expressed by the following euation:

F2 Y = max 0, W2 × F1 Y + B2 (18)

Here, the size of W2 is n1 × 1 × 1 × n2, and B2 is a n2-
dimensional vector. The n2-dimensional vector of each output is
conceptually a representation of the HR patch that will be used for
reconstruction.

5.1.3 Reconstruction: This operation aggregates the HR patch
representation described above to generate a final HR image that is
as similar as possible to the original HR image. Expressed by the
following equation:

F Y = W3 × F2 Y + B3 (19)

where the size of W3 is n2 × f 3 × f 3 × c, and B3 is a c-dimensional
vector.

SRCNN uses MSE as a loss function, which is beneficial to
obtain a higher PSNR. Let the original HR image be X, so the loss
function formula will be shown in (20), where the function F( ⋅ ) is
the method of SRCNN, Yi represents the original image, and Xi

represents the generated image.

LMSE =
1
n

∑
i = 1

n

∥ F Yi − Xi ∥2 (20)

5.2 EDSR

EDSR [8] is a model of the winner in the NTIRE2017 Super-
Resolution Challenge [47]. The network structure of EDSR is
based on the improvement of SRResNet [9]. On the basis of
SRResNet, the batch normalisation (BN) [48] layer in the residual
block is removed, and the ReLU active layer is not set outside the
residual block. The model also has no residual scaling layers
because it uses only 64-dimensional feature for each convolutional
layer. The comparison of the residual block structure of EDSR with
the original residual network and SRResNet is shown in Fig. 7 The
network structure of EDSR is shown in Fig. 7. 

The BN layer in SRResNet comes from the most primitive
ResNet [49]. And in the case that the original ResNet was first
proposed to solve high-level computer vision problems, such as
classification and detection, applying the structure of ResNet
directly to low-level computer vision problems like super-
resolution does not perform well. At the same time, since the BN
layer consumes the same amount of memory as the convolutional
layer in front of it, it can save memory resources after being
removed, which means that EDSR can stack more network layers
or extract more features for each layer for better performance with
the same computing resources.

EDSR uses the L1 loss function to optimise the network model
(see Fig. 8). The loss function is shown below:

L1 P =
1
N

∑
p ∈ P

x p − y p (21)

where p is the pixel number, P is the patch, x(p) and y(p) are the
pixel values, respectively, for processing the patch and the original
image.

During training, a low-multiple up-sampling model is trained
first, and then a high-multiplied up-sampling model is initialised by
training the parameters obtained by the low-multiplied up-sampling
model. This can reduce the training time of the high-magnification
up-sampling model, and the training results are better.

Fig. 6௒ SRCNN structure
 

Fig. 7௒ Comparison of the original residual network, SRResNet and EDSR residual blocks
 

IET Image Process., 2020, Vol. 14 Iss. 11, pp. 2273-2290
© The Institution of Engineering and Technology 2020

2277



5.3 WDSR

WDSR [10] is a super-resolution framework proposed by JiaHui
Yu et al. in 2018. At the same time, the WDSR-based image super-
resolution method also obtained the first name of single image
super-resolution in all three real tracks in the NTIRE 2018
challenge [50]. WDSR is an improved algorithm based on the CNN
optimisation model, and the CNN-based SR algorithm can be
optimised in the following four directions.

5.3.1 Up-sampling algorithm: The current CNN method is
mainly to learn HR features that are converted from LR up-
sampling to HR images. The traditional up-sampling methods are
deconvolution and bilinear interpolation, etc., which are not
suitable for restoring the details and texture of LR images, so it
tends to produce images that are too smooth and also introduces
too many artefacts. At the 2016 CVPR conference, a new
convolution algorithm for pixel shuffle [51] completely tailored for
image super-resolution was proposed. Through the way of inserting
LR features into LR images periodically at specific locations, the
risk of loss of detail caused by artefacts can be significantly
reduced.

5.3.2 Deep neural network: The depth of the neural network is
one of the key factors affecting the performance of the SR
algorithm. At the same time, using the method of the cyclic neural
network can increase the reusability of weights.

5.3.3 Skip-connecting: Based on the Resnet algorithm, the front
layer output is connected to the deep layer output. First, the
gradient dispersion of backpropagation can be effectively solved,
and second, shallow feature information can be effectively utilised.
The current well-performing SR algorithms will contain ResBlock
almost.

5.3.4 Batch normalisation: Various image super-resolution
algorithms seem to be inseparable from BN. However, BN is not
the only normalisation method. Currently, the popular
normalisation methods of the SR algorithms are BN and weight
normalisation.

WDSR is improved based on the EDSR algorithm. EDSR and
WDSR are consistent across the overall framework, as shown in
Fig. 9, consisting of the convolutional layers, the residual blocks,
and the up-sampled layers. WDSR has partially improved the
details of EDSR. The first is to remove most of the redundant
convolutional layers, which reduces memory and increases
computational speed.

On the other hand, WDSR changed the ResBlock structure of
EDSR. The removed redundant layers are absorbed into the
ResBlock. Through a lot of experiments, the results of the image
are not degraded, so it can be indirectly proved that removing the
redundant convolutional layer outside the ResBlock can reduce the
computational overhead.

Figs. 10–12 show the ResBlock of EDSR, WDSR-A, and
WDSR-B. For the ResBlock of EDSR, its activation function,
shown as ReLU, is operated between two convolutional layers, and
the number of filters per convolutional layer is small. In contrast,
ResBlock of WDSR-A increases the width of the feature map by
increasing the number of active layer pre-convolution layer
convolution kernel filters without adding computational overhead.
It allows the network to learn more detailed features of the picture.
In addition, the main frontier of WDSR is to increase the number
of channels of the shallow feature map of the activation function to
restore the details and texture parts of the image. WDSR-B further
liberates the computational overhead relative to WDSR-A, splitting
the large convolutional layer into two small convolutional layers
after the activation function. This allows a wider range of feature
maps to be obtained with the same computational overhead.

Secondary, WDSR has another innovation compared to EDSR
is replacing BN [48] with weight normalisation [52]. Why use
weight normalisation instead of BN? First, the weight
normalisation accelerates the convergence of deep neural network
parameters by rewriting deep learning weights. In addition, since
the introduction of mini-batch, it is also applied to RNN-based
deep learning network. At the same time, BN calculates the mean
and variance of the data set based on mini-batch instead of the
entire data set, which is equivalent to performing the gradient
calculation and introducing noise. Therefore, BN is not used to
reinforce learning and generating models. In contrast, weight
normalisation rewrites the weight W by the scalar g and the vector
v, and the rewriting vector v is fixed. Thus we can think that being
based on weight normalisation can introduce less noise than BN.
Using weight normalisation does not require additional storage
space to preserve the mean and variance of the mini batch, and the
additional computational caused by the forward signal propagation
and inverse gradient calculations in deep learning network is also
small. Apparently, the normalisation with weight normalisation
needs less memory while leads faster calculations.

5.4 RDN

The RDN [11] proposes a RDB to mine rich local features through
densely connected convolutional layers. The overall structure of
the model is shown in Fig. 13. 

As shown in the above, let ILR and IHR be the input and output
of the model, respectively. The model consists of four main
modules.

Fig. 8௒ Network structure of EDSR
 

Fig. 9௒ Overall structure of WDSR and EDSR
 

Fig. 10௒ ResBlock of EDSR
 

Fig. 11௒ ResBlock of WDSR-A
 

Fig. 12௒ ResBlock of WDSR-B
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5.4.1 Shallow feature extraction net (SFENet): This module
includes two convolutional layers for extracting shallow features.
The first convolutional layer extracts the feature F−1 from the LR
input as follows:

F−1 = HSFE1 ILR (22)

where FSFE1 ⋅  represents the convolution operation of the first
shallow feature extraction layer, and F−1 is used for further shallow
feature extraction and global residual learning. So we can go
further as follows:

F−0 = HSFE2 F−1 (23)

where FSFE2 ⋅  represents the convolution operation of the second
shallow feature extraction layer, and F−0 is the input of the RDBs.

5.4.2 RDBs: This module consists of multiple RDBs. The
structure of each RDB is shown in Fig. 14. 

Assuming the total number of RDBs is D, so the output of the
dth RDB can be expressed as

Fd = HRDB . d Fd − 1

= HRDB . d HRDB . d − 1 ⋯ HRDB.1 F0 ⋯
(24)

where HRDB . d represents the operation of the dth RDB. This
operation is a composite function operation, such as a convolution
operation and a ReLU activation function. Fd is the output of the
dth RDB and Fd − 1 refers to the (d − 1)th RDB.

The RDB integrates the modules of the residual blocks and the
dense blocks. The difference among these three modules is shown
in Fig. 15. 

The RDB mainly consists of three parts: the contiguous
memory module passes the state of the previous RDB to each layer
of the current RDB. The local feature fusion module combines the
state of the previous RDB with the state of each Conv layer in the
current RDB. The local residual learning module combines the
input of the RDB with the features of the output after the 1*1
convolution operation to help improve the expressiveness of the
model.

5.4.3 Dense feature fusion (DFF): The DFF module consists of
global feature fusion and global residual learning.

Global feature fusion combines the features of each RDB output
F1, …, FD  to extract a global feature FGF which can be expressed

as

FGB = HGFF F1, …, FD (25)

where HGFF is a composite function, including a 1*1 convolution
layer for adaptively merging different levels of features, and a 3*3
convolution layer for further extracting the features of global
residual learning.

Global residual learning combines the original shallow feature
F−1 with the FGF obtained in global feature fusion, which can be
expressed as

FDF = F−1 + FGF (26)

5.4.4 Up-sampling net (UPNet): This module represents the last
up-sampling and convolution operation of the network, which is
able to enlarge the input picture. The output of the entire model can
be expressed as

ISR = HRDN ILR (27)

where HRDN represents all operations of the entire RDN model, ISR

is the super-resolution image and ILR refers to the low-resolution
image.

5.5 DSRN

Many super-resolution models can convert their networks into an
expanded limited single-state RNN. DSRN [6] is proposed as a
two-state design based on the finite expansion of single-state RNN.
Compared to the models that are using the fixed-resolution signal,
DSRN utilises both LR and HR signals and performs two-way
fusion in it. Excellent qualitative and quantitative results are
obtained in the baseline data set, and DSRN has better performance
than the most advanced methods in terms of memory consumption
and image reconstruction quality.

Fig. 13௒ Network structure of RDN
 

Fig. 14௒ Structure of the RDBs module
 

Fig. 15௒ Comparison of RDB with residual blocks and dense blocks
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Also, in the deeper CNN model, the performance of super-
resolution can be better improved, because the mapping
relationship between LR and SR can be better learned in the deeper
model with more parameters, and the deep model can be
effectively prevented from disappearing due to the proposed
residual network.

After referring to the methods of DRN and DRCN, the method
is found to be implemented in a single state structure RNN. In
contrast, the mapping functions of the two networks are not the
same. Our dual-state recursive network can perform super-
resolution reconstruction at different spatial resolutions. Resnet,
DRCN [53], and DRRN [54] are modified for the RNN. ResNet
branches in the upper layer of the network, which is divided into
direct connections and jump connections through two convolution
blocks. By contrast, the DRCN change method is more
straightforward, which is directly connected by adding a
convolution layer between the upper and lower layers. The DRRN
is connected in a single-state RNN by connecting the initial state
weight to the hop connection. The network structure is shown in
Fig. 16. 

5.6 LRFNet

CNN is the basis for deep learning of SISR. However, since the
introduction of ResNet, the existing network is so deep that it has
many network parameters, which leads the time, and the amount of
the occupation of the GPUs and CPUs is too much during the test
and training process. LRFNet uses an Atrous conv and a 1D
separable kernel to reduce parameter requirements. Because using
a 1D detachable filter and Atrous conv can achieve the
performance of a conventional conv with fewer parameters.
Furthermore, the input of LRFNet-B [7] is two three-times
magnified LR images connected using the global and local plus,
and each residual block uses an EDSR structure. Among them,

LRFNet-B uses 12 residual blocks, Conv core 3*3, 64 filters, and
ReLU.

Using a 1D Conv layer needs fewer parameters while it has the
same performance as a multi-dimensional Conv. This is because
the separable filter is a combination of the matrix products of two
low-dimensional convolution filters, and the ordinary 2D one is
composed of two 1D filters. LRFNet-A uses Atrous Conv as the
convolutional layer of this method to extend the conventional
convolutional layer, and for the 1D core, each residual block has a
conv of 1*k and K*1. Since it only adds Atrous Conv extended
convolution to some blocks, the effect is not as good as RDN and
ESRGAN. The network structure of the model is shown in Fig. 17. 

5.7 RCAN

This approach addresses the problem of difficult training in deep
SISR network. It believes that LR inputs contain a lot of low-
frequency information. Many CNN-based methods treat each
feature in the channel equally, including this low-frequency
information, which hinders the ability for the deep network to
express. To this end, a RCAN [14] has been proposed to obtain a
very deep network.

The paper believes that a simple stacking residual block is
difficult to be improved by deepening the network. Therefore, in
the network structure, a residual structure (RIR) is proposed to help
form a deep network which can reach the maximum depth
currently known and is capable of providing very large receiving
areas. The structure consists of a plurality of residual groups (RGs)
with long skip connections, and each RG contains a plurality of
simplified residual blocks with short skip connections. RIR allows
the main network to focus on high-frequency information by
bypassing the connection to bypass rich low-frequency
information. In addition, a channel attention mechanism is
proposed to adaptively re-adjust the characteristics of the channel

Fig. 16௒ Network structure of DSRN
(a) ResNet, (b) DRRN, (c) DRCN

 

Fig. 17௒ Network structure of LRFNet
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mode by considering the interdependencies between the channels.
Each RG includes a residual channel attention block (RCAB) with
a short hop connection, and the global average information of the
channel mode is incorporated into the channel descriptor using the
global average pool.

RCAN is divided into four parts in the network structure.
Extract the shallow feature F0 from the ILR using a

convolutional layer

F0 = HSF ILR (28)

where the HSF( ⋅ ) represents a convolution operation. F0 is then
used for depth feature extraction.

FDF = HRIR F0 (29)

Think of the RIR output as a deep feature and zoom by using
the amplification module. where the FUP( ⋅ ) and HUP( ⋅ ) stand for
the upscale module and upscaled feature, respectively,

FUP = HUP FDF (30)

The magnified features are finally reconstructed by a
convolutional layer. HREC( ⋅ ) and HRCAN( ⋅ ) represent the
reconstruction layer and RCAN method function of SISR method,
respectively.

FSR = HREC FUP = HRCAN ILR (31)

5.8 CARN

This paper is dedicated to providing an accurate and lightweight
depth network for image super-resolution to easily apply it. A
lightweight deep learning model is designed to reduce parameters
and reduce operands. A neural network CARN [12] based on the
cascade module is proposed. By combining effective residual block
and recursive network scheme, a variant model CARN-M is
proposed to improve efficiency further.

The middle part of the model is based on ResNet, and the main
difference is the existence of local and global cascading modules.
Using a layered mechanism at the local and global level to merge
multiple layers of functionality, the output of the middle layer is
cascaded to a higher layer and finally converged on a 1 × 1
convolutional layer. Local cascading and global cascading except
for the unit block is almost the same as other aspects of the
ordinary residual block (as shown in Fig. 18), and to improve
efficiency, a residual-E block is also proposed. 

5.9 IDN

As the depth and width of the network increase, the CNN-based
SISR method faces the problem of significant computation and
memory overhead. Therefore, Zheng et al. proposed a deep and
concise convolutional network (IDN) to implement the super-
resolution function [55]. The IDN includes three parts: a feature
extraction module, a stacked information distillation module, and a
reconstruction module. The structure of the IDN is shown in Fig.
19. 

The feature extraction module is the FBlock in the network
structure diagram, which is mainly composed of two convolution
layers. Then the focus of the network is the information distillation
block (DBlock) shown in the structure diagram, which includes an
enhancement unit and a compression unit. The enhancement unit is
shown in Fig. 20. The enhancement unit consists of three 3 × 3
convolutions, each of which is followed by an LRelu activation
function. The compression unit is composed of a 1 × 1 convolution
layer, which is mainly responsible for fusing the information
distilled from the enhancement unit.

5.10 Characteristics of CNN models

Below we summarise the characteristics of the CNN-based models
introduced in this paper. SRCNN is a pioneering work, and its
network structure is straightforward. EDSR improved the residual
block structure of SRResNet and removed the BN layer to save
memory resources. WDSR removed most of the redundant
convolutional layer based on EDSR and changed BN to weight
normalisation, which requires less memory and is faster to
calculate. RDN proposed the residual dense network by integrating
the modules of the residual block and the dense block to mine rich
local features through densely connected convolutional layers.
DSRN used both LR and HR signals and performed a two-way
fusion in the model. LRFNet used atrous conv and a 1D separable
kernel to reduce parameter requirements. RCAN proposed a
residual structure (RIR), which allows the main network to focus
on high-frequency information by passing the connection to avoid
rich low-frequency details and offered a channel attention
mechanism to adaptively readjust the characteristics of the channel
mode by considering the interdependencies between the channels.
CARN proposed an accurate and lightweight deep network with
fewer parameters and operands. IDN is aimed at the problem of
increased computation and memory overhead caused by the
increase of network depth and width and proposes the use of the
deep and concise convolutional network.

In conclusion, most CNN-based methods are pursuing deeper
networks to improve performance. This is because theoretically,
the depth of the network is critical to the performance of the model.
When the number of network layers is increased, the network can
extract more complex feature patterns, so theoretically, better

Fig. 18௒ Local cascading block structure of CARN
 

Fig. 19௒ Structure diagram of the IDN
 

Fig. 20௒ Structure diagram of the enhancement unit
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results can be obtained when the model is deeper. However, deep
network often has the problem of gradient disappearance or
explosion. ResNet's proposal solves this critical problem. Its
appearance has increased the number of layers of the network
several times, which is a milestone. At the same time, Researchers
have also noticed the considerable consumption of memory and
time by deep network, so some models that focus on reducing
memory consumption and the number of parameters have
appeared, and have achieved some good results.

6௑Image SRGAN
6.1 SRGAN

SRGAN [9] was proposed by Christian et al. in 2017 to use GAN
for super-resolution reconstruction. The network is the first
framework to recover 4 × down-sampled images. At the same time,
the structure also modified the loss function from the mean squared
loss function commonly used in the CNN method is replaced by a
new perceptual loss function consisting of resistance loss and
content loss. The loss function of SRGAN is shown in (32), where
lX
SR is the content loss, and 10−3

lGen
SR  is the adversarial loss. A higher

PSNR can be obtained with a MSE as a loss function, but at a
higher recovery multiple, the reconstructed image is too smooth
and lacks some detail realism. The adversarial loss function is
based on the probability of the discriminator output, as shown in
(33), where DθG

⋅  is the probability that an image belongs to a
real HR image GθG

I
LR , which is a reconstructed HR image. The

content loss is a pixel-by-pixel loss of the feature map of an
individual layer, including the minimum MSE (MSE loss) of the
pixel space, as shown in (34). The minimum MSE of the feature
space is a high-level feature that uses the VGG network [56] to
extract images. By comparing the features of the generated image
through the CNN and the features of the target image after
convolving the neural network ϕi, j, the generated picture and the
target picture are more similar in semantics and style, as shown in
(35). In (33)–(35), N represents the number of pixels of the image,
and W and H represent the width and height of the image,
respectively.

l
SR = lX

SR + 10−3
lGen
SR (32)

lGen
SR = ∑

n = 1

N

− log DθG
GθG

I
LR (33)

lMSE
SR =

1

r
2
WH

∑
x = 1

rW

∑
y = 1

rH

Ix, y
HR − GθG

I
LR

x, y

2

(34)

lVGG/i, j
SR

=
1

Wi, jHi, j
∑
x = 1

Wi, j

∑
y = 1

Hi, j

ϕi, j I
HR

x, y − ϕi, j GθG
I

HR
x, y

2 (35)

So we can derive the formula for generating the network loss
function, as shown in (36), where IG stands for the generator loss,
Icontent loss refers the content loss, IVGG loss refers the VGG network
loss, and Iadversarial is the adversarial loss. The judgment network
only has an adversarial loss function, as shown in (37). E
represents the operation of averaging all the fake data in the mini-
batch. where ∑I [ ⋅ ] represents the operation of averaging all the
fake data and true data in the mini-batch.

lG = lcontent loss + lVGG loss + ladversarial (36)

ladversarial = min
θG

max
θD

∑I
HR ∼ ptrain I

HR log DθG
I

HR

+∑I
LR ∼ pG I

LR log 1 − DθG
GθG

I
HR

(37)

The model's generation network and judgment network are
shown in Figs. 21 and 22. The Residual Network Part (SRResNet)
section contains multiple residual blocks, each of which contains
two 3 × 3 convolutional layers, and the convolutional layer is
followed by BN and PReLU as activation functions. Two 2 × sub-
pixel convolution layers are used to increase the feature size. In the
discriminating network part, there are eight convolutional layers.
As the network layers deepens, the number of features increases
continuously, and the feature size decreases. The activation
function is selected as LeakyReLU. The probability of predicting a
natural image is finally obtained by two fully connected layers and
the final sigmoid activation function.

The main contribution of the model is presented in SRResnet
proposed to obtain detailed textures and details in the image
results. At the same time, the perceptual loss is applied to the anti-
neural network, and the 4 × down-sampled image super-resolution
is realised. But the model also has some problems, such as using
the BN layer as part of the activation function. Although it can
speed up the convergence, it will produce artefacts when the
network is deeper and more complex.

6.2 ESRGAN

ESRGAN [57] is a model proposed based on the improvement of
SRGAN. As mentioned above, the enlarged details of the images
produced by SRGAN are often accompanied by unpleasant
artefacts. In order to further improve the visual quality, ESRGAN
mainly aims to improve the three key parts of SRGAN: network
structure, adversarial loss, and perceived loss.

Fig. 21௒ Generation network structure of SRGAN
 

Fig. 22௒ Discriminant network structure of SRGAN
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On the network structure, ESRGAN removed all BN layers.
The original basic block is replaced by a residual-in-RDB (RRDB)
[14], which combines a multi-level residual network with dense
connections. The BN layer is removed because it tends to produce
unpleasant artefacts and limit generalisation when training and
testing data sets. Removing the BN layer can help improve
generalisation and performance, and reduce computational
complexity. RRDB uses deeper, more complex structures than the
original residual blocks in SRGAN, since more layers and
connections always means higher performance. Fig. 23 shows a
schematic diagram of the RRDB model, and Fig. 24 shows a
schematic diagram of the dense block. 

In addition, ESRGAN improved the discriminator based on
relativistic GAN [58]. The discriminator in SRGAN is used to
estimate the probability that the image input to the discriminator is
a real and natural image, while the relativistic discriminator
attempts to estimate the probability that the actual image is more
realistic than the fake image. This modification for discriminator
helps to learn sharper edges and more excellent textures. In the
generation of the network part, SRResNet is used as the basic
network architecture, and in order to transfer most of the
calculations to the feature space of the LR image, the amount of
calculation is reduced. Fig. 25 shows the basic architecture of
SSResNet. Each residual block contains two 3 × 3 convolutional
layers. PReLU acts as an activation function after the convolutional
layers, and two 2 × sub-pixel convolution layers are used to
increase the feature size. Parametric leaky ReLU (PReLU) works
better on more larger data sets and has overfitting risk on smaller
data sets. It also prevents the problem of gradient disappearing.

In addition to improvements in network architecture, ESRGAN
also uses several techniques to facilitate very deep network
training: one is residual scaling, which is to reduce the residual by
multiplying a constant between 0 and 1, and then add them to the
main path to improve stability. The second is to use a smaller
initialisation, making the initial parameter variance smaller and
more comfortable to train.

In terms of the perceptual domain loss function, ESRGAN
proposes a more efficient perceptual domain loss, using pre-
activation features (VGG16 network). This will overcome two
shortcomings. First, the activated features are very sparse,

especially in a deep network. This sparse activation provides a
weak monitoring effect and causes poor performance. Second, the
use of activated features may cause the reconstructed image to be
inconsistent with the brightness of the GT. This loss is based on a
VGG16 network (MINCNet) for material identification, which
focuses more on texture than on objects.

In addition, ESRGAN also implements the interpolation
function of the network in order to be able to produce all possible
results without introducing artefacts. At the same time, the
perceived quality and fidelity of the image can be balanced, and the
training time can be reduced without retraining the deep neural
network. Equation (38) is the calculation method, and α is the
interpolation parameter, where the θG

PI stands for the parameters of
interpolation, the θG

PSNR represents the parameters of a PSNR-
oriented network, and the θG

GAN is the parameters of a GAN-based
network.

θG
PI = 1 − α θG

PSNR + αθG
GAN (38)

6.3 ProSR

This model [15] is mainly aimed at obtaining high-quality results
in the case of large up-sampling factors and proposes a method that
is gradual in both structure and training. In terms of structure, an
asymmetric pyramid structure is proposed. Each level consists of a
cascading dense compression unit (DCU) followed by a sub-pixel
convolutional layer. The DCU is composed of dense blocks whose
structure is CONV (1,1)-RELU-CONV (3,3). The function of each
level of the pyramid is to perfect the feature and perform 2 × up-
sampling on its input, allocate more DCUs at the lower level,
reduce memory consumption, increase the receiving field relative
to the original image, and achieve a higher up-sampling rate with
the efficiency maintained. The network structure is shown in Fig.
26. 

In order to achieve a more realistic effect, the GAN framework
was adopted and a discriminator was designed. It matches the
progressive nature of the generator network by calculating the
fertility output for each scale. In the part of loss function, the more
stable least squares loss is used instead of the original cross entropy
loss.

Using the method of curriculum learning to improve training by
gradually increasing the difficulty of learning tasks can improve
training time and generalisation performance. Model training
begins with the 2 × portion of the network, and the new level of the
pyramid merges as it enters the new phase of the model, which
reduces its impact on previously trained layers. This progressive
training strategy that feeds different scales of training
simultaneously into the network reduces the total training time

Fig. 23௒ Schematic diagram of the RRDB model
 

Fig. 24௒ Schematic diagram of the dense block model
 

Fig. 25௒ Basic structure of SRResNet
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greatly, and it has further performance improvements at all
included scales and mitigates the instability in GAN training.

Compared to the other similar methods of accuracy
reconstruction, the model's asymmetric pyramid structure
contributes to faster runtimes and has five times faster runtime than
the top team in the NTIRE 2018 challenge [50].

6.4 CinCycle

For LR inputs, the quality is further reduced due to noise and
blurring, and for this complex case, supervised learning and
accurate fuzzy kernel estimation will not be possible. This method
[59] inputs a LR image with fuzzy kernel noise and maps it to a LR
space with no noise blur and then up-sample image using a pre-
trained super-resolution model to obtain a super-resolution image.
And we adjust these two methods to get better super-resolution
image output.

The method consists of two CycleGANs [60]. The first one will
Cycleangle map the LR image to the noise free fuzzy LR space so
that this module ensures proper denoising/deblurring of the LR
input. Another CycleGAN is a pre-trained super-resolution model
to up-sample intermediate results to the desired size. Finally, a
training approach to learning is used to fine tune the network. The
generation model of this network is similar to the architecture of
ResNet.

Its effect is similar to that of CNN-based monitoring
algorithms. The only advantage is that it can be used in the absence
of data pairs, but it is not very good if it is for the game.

6.5 SRFeat

In 2018, Park et al. proposed a new SISR framework called SRFeat
[61]. This framework mainly solves the problems of current GAN-
based super-resolution methods used to generate real texture
information. Among them, GAN methods tend to produce less
meaningful high-frequency noise that has nothing to do with the
input image. Therefore, the SRFeat model adds a discriminative
network acting on the feature domain, so that the generation

network can generate high-frequency features related to the image
structure. The main innovations of the SRFeat model include the
following two aspects:

1. Two types of discriminators are proposed, which are image
domain and feature domain discriminators, which are mainly
used to discriminate that the model generates high-frequency
information instead of noise.

2. A ResNet-like skip connection was used in the generation
network.

SRFeat's generation network is similar to SRResNet. Generate
the network structure diagram, as shown in Fig. 27. However,
compared to SRResNet, it uses more long-range hop connections.
Park et al. believed that the SSResNet model is equivalent to each
layer feature. The model uses 1 × 1 − Conv as a bottleneck to
connect the features of different layers, and then dynamically
adjusts their weights. The layer adds all the features. It is similar to
the attention mechanism in the RNN model. By doing so, the
gradient can be more easily updated during the backward
propagation process, and the features of the middle layer can be
fully utilised to improve the final aggregation features.

Then use the sub-pixel convolutional layer to complete the
scale-up operation. The structure of the discrimination network is
similar to SRResNet. The structure diagram is shown in Fig. 25.

6.6 Characteristics of GAN models

Below we summarise the characteristics of the GAN-based models
introduced in this paper. SRGAN is the first application of GAN to
the field of super-resolution reconstruction. Its proposed generator
network, SSResnet, can generate result images with detailed
textures and details. At the same time, it applied perceptual loss to
GAN, and it is the first framework capable of recovering 4 ×
down-sampled images. ESRGAN removed all BN layers based on
SRGAN and replaces the original basic block with the RRDB.
Besides, based on relativistic GAN, it improves the discriminator
and improves the perceptual loss function. ProSR proposes a

Fig. 26௒ Structure diagram of the ProSR network
 

Fig. 27௒ Structure diagram of the SRFeat network
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method that is progressive in both structure and training to achieve
high-quality results with large up-sampling factors. CinCycle maps
LR image input with blur kernel noise to LR space without blur
noise, which solves the problem of low-quality input quality
degradation caused by noise and blur. SRFeat is directed at the
problem that GAN-based methods tend to generate high-frequency
noise that is unrelated to the input image and adds a discriminative
network that acts on the feature domain so that the generation
network can create high-frequency features related to the image
structure.

In conclusion, most GAN-based methods are mostly based on
the original SRGAN framework and continue to propose
optimisation methods for some details of the inventive method's
network structure and loss function. The most significant
difference between GAN-based methods and CNN-based methods
is that they are not committed to obtaining high PSNR values. In
the work of SRGAN, it is pointed out that the pictures with high
PSNR values are too smooth and lack some realism in detail.
Therefore, a perceptual loss is proposed, and detailed textures and
details are obtained. Although SRGAN itself has many problems,
as a pioneer, its SRResNet generation network and perceptual loss
function set the tone for GAN-based methods. Later, researchers
have carried out a series of optimisations based on it and have
achieved good results.

7௑Compare results
7.1 Characteristics comparison

Now, we analyse and compare the characteristics of the models
mentioned in the paper. The detailed model features are compared
in Table 1. Among them, the ‘91 images’ is a data set proposed by
Yang et al. [65], the ‘291 images’ is composed of ‘91 images’ and
‘200 images’, and ‘200 images’ is an image data set introduced by
Martin et al. [66]. First, we observe Table 1 and find that before the
application of artificial intelligence methods in the field of SISR,
the mainstream algorithms are divided into interpolation and
regularisation. The interpolation method is mainly based on the
bicubic method. Because the bicubic method only interpolates the
image edges in the horizontal and vertical directions, the traditional
bicubic method is prone to generate image artefacts. Therefore,
most of the optimisation methods of interpolation perform
interpolation processing on the image based on the change of

interpolation direction and filter selection. Because the difference
method only refers to the original image, its method cannot learn
deeper image features to restore sharper image textures. The
regularisation method is to obtain a clearer image by adding a
penalty to the loss function. Most of the current regularisation
methods are regularisation based on ridge regression and Lasso
regression. Regularisation can be combined with deep learning to
restore image details, so the regularisation method is highly
flexible. Second, according to Table 1, it is found that most of the
methods of the current SISR model belong to one of CNN or GAN.
And through experimental observation, it is found that the image
texture generated by using the CNN model as the basic framework
of the SISR method is often too smooth and lacks details. The
texture produced by the SISR process of the GAN model is vibrant,
but many artefacts will appear to affect the image quality. With the
development of the SISR method, we can see from Table 1 that the
SISR model is developing towards a lightweight model. This is
also in line with our current needs for mobile devices and the
Internet of Things (IoT). Besides, through the analysis of the
network structure of the SISR model, we found that the SISR
model was quickly applied to the SISR field with the introduction
of the network structure, such as the application of network
structures such as VGGNet [56], ResNet [49], and DenseNet [67].
At the same time, with the development of SISR, substantial
changes have also taken place in the training data set. Looking at
Table 1, we can see that the training data set is moving towards the
real data set, without using downsampling to generate the
corresponding data set. This shows that we pay more attention to
the low-scoring images in the real world, which can help the
implementation of the training model in real life. Besides, we can
find that with the development of SISR, the training data set is
gradually becoming richer. Most of the datasets used in the early
days of SISR were low-quality image datasets, such as ImageNet
subset, ‘91 images’ and ‘200 images’. The current SISR training
data set has been changed to use very rich DIV2K [68] and
Flickr2K [69]. This is because the rapid development of machine
hardware has increased computing power, and more complex
images are required for learning due to more complex scene
requirements.

Table 1 Comparison of features of characteristics models
Model Structure Parameters Train data Years
bicubic — — — —
DBI bicubic — — 2013
DWT-BI wavelet transform — — 2013
SRCNN CNN 8.032 K ImageNet subset 2015
SCN [62] CNN&Linear 31 K 91 images 2015
FSRCNN [63] CNN 3.937 K General-100 2016
VDSR [62] VGG-Net 665 K 291 images 2016
DRCN RNN  &  ResNet 1.77M 91 images 2016
SelfExSR [63] — — Urban 100 2017
LapSRN [62] ResNet 812 K 291 images 2017
DRRN RNN  &  ResNet 297 K 291 images 2017
EDSR ResNet 43M DIV2K 2017
SRGAN GAN 1.5M DIV2K 2017
EIFG CNN — — 2017
JRSR — — 91 images 2018
DSRN RNN  &  ResNet 1.25M 291 images 2018
LRFNet-S [7] ResNet 1.086M DIV2K 2018
ProSR DenseNet 1.89M DIV2K 2018
MSRN [64] ResNet 6.3M DIV2K 2018
RDN ResNet 22.6M DIV2K 2018
RCAN ResNet 15.6M DIV2K 2018
CARN ResNet 1.592M DIV2K 2018
ESRGAN DenseNet — DIV2K  &  Flickr2K 2018
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7.2 Quantitative comparison

We selected some models to be tested on multiple test sets. The
CPU of the test server environment is Intel Core i9, and the GPU is
NVIDIA Tesla P100. The results are shown in Table 2. 

The models in the above table are generally arranged in
chronological order, and it can be seen that some new models tend
to have better test results. Bicubic is an interpolation-based non-
deep learning method with a PSNR value that ranks lowest in all
test sets. DBI also belongs to a type of interpolation method, which
is to improve the edge texture and sharpness of interpolation
according to the intensity and direction of image energy by the
bicubic method. Through the results of PSNR and SSIM, it is
found that there is a certain improvement over bicubic. Because its
principle is similar to Bicubic, the improvement effect is not
apparent. DWT-BI is a traditional wavelet transform filter to
generate a sub-band image and then combines it with a LR image
to restore the image texture. We can find that the interpolation-
based method cannot learn the deeper features of the image, so the
results cannot achieve the effect of the deep model. The
regularisation method is mostly used as an objective function to
optimise the edge texture and details of the image, so this method
can often be combined with advanced techniques to get better
results. SRCNN is the first model of deep learning applications in
the SR field, which has a significant improvement over bicubic.
FSRCNN is an improvement based on the SRCNN, whose PSNR
value has been slightly improved and the training speed has been
greatly improved, which is more importantly. SelfExSR is a non-
deep learning method based on self-similarity, and its result is
better than bicubic but not as good as other deep learning methods.
The advantage is that there is no need to use external training
samples. SCN uses a sparse coding model based on SRCNN,
which reduces the complexity of the algorithm. VDSR uses the
method of residual learning to deepen the network structure, which
greatly improves the test results, but the operation efficiency is
lower because the network is too deep. The DRCN uses a RRN and
also uses the idea of residual learning to achieve some
improvement in the test results. Both DRRN and DSRN are the
idea of combining the residual network and the recursive network,
and the results are similar to other models in the same period.

LRFNet-S uses a large receiving field network to achieve large-
scale image super-resolution, with a certain improvement in PSNR
values. SRGAN is the first SR method to use the GAN model. It is
not optimised for PSRN values, but focuses on the detailed texture
of the image, which is good in perception. EDSR uses the
generation network SRResNet in SRGAN and removes the BN
layer on the basis of it, so that the memory resources are saving
and the result has been greatly improved. LapSRN, MSRN, and
ProSr are dedicated to multi-scale super-resolution reconstruction.
Among them, LapSRN uses a step-by-step upsampling method
with a faster running speed, MSRN uses a residual network, ProSR
uses the GAN model, and they are all perform well on PSRN. RDN
proposed RDB to mine richer features, and its test results ranked
higher. RCAN proposed RIR to help train the deep model, and the
test results performed very well. CARN is a lightweight, deep
learning model that performs best in our small sample tests.
ESRGAN is based on the improvement of SRGAN, which
eliminates the artefacts of the original model, achieves better visual
effects, and its performance on PSNR is also good. While Meta-SR
may not be as effective as other advanced SR methods, this method
is a multi-scale SR model that can be applied to any SR task with
magnification.

7.3 Qualitative comparison

We selected two images for testing. The scenes of the two images
are simpler and the other one is more complicated. The result is
shown in Fig. 28. First focus on the test results of simple scene
pictures. In the interpolation-based method, compared to the
traditional BI method, the directional BI (DBI) has a significant
improvement in image sharpness, and the method based on DWT
and BI (DWT–BI) performs better in the detail position of the
window railing, but the details appear slightly distorted, and two
methods based on regularisation have achieved good details but
also appeared some redundant details, the method based on joint
regularisation (JRSR) can even see obvious warped textures. In the
CNN-based method, except for the original SRCNN and FSRCNN,
which are relatively fuzzy, the result pictures of most CNN-based
models are relatively clear. CARN as a lightweight model has
achieved comparable performance with most CNN-based models,

Table 2 Results of the tested models on multiple test sets
Datasets Set5 [70] Set14 [71] BSDS100 [72] Urban100 [73] Manga109 [74]
methods PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM
Bicubic 28.42 0.8104 26 0.7027 25.69 0.6675 23.14 0.6577 24.89 0.7866
DBI 28.97 0.8213 26.75 0.7088 25.83 0.6728 23.55 0.6609 24.92 0.7877
DWT-BI 29.92 0.8562 26.97 0.7502 26.1 0.6895 23.90 0.6972 26.18 0.8022
SRCNN 30.48 0.8628 27.5 0.7513 26.9 0.7101 24.53 0.7221 27.58 0.8555
FSRCNN [63] 30.72 0.8666 27.61 0.7555 26.98 0.715 24.62 0.728 27.9 0.861
SelfExSR [73] 30.33 0.8611 27.54 0.7563 26.84 0.716 24.82 0.7401 28.1 0.8632
SCN [62] 30.39 0.8623 27.48 0.7512 26.87 0.712 24.52 0.7552 27.91 0.8602
VDSR [75] 31.35 0.882 28.02 0.7681 27.29 0.0711 25.18 0.751 28.83 0.887
JRSR 31.32 0.8809 27.99 0.7702 27.11 0.7128 25.01 0.7434 28.08 0.8845
DRCN 31.53 0.8841 28.04 0.7704 27.24 0.7243 25.14 0.7518 28.99 0.8891
LapSRN [76] 31.54 0.8855 28.19 0.7721 27.32 0.7286 25.21 0.7562 29.02 0.89
DRRN 31.68 0.8891 28.19 0.7721 27.38 0.7281 25.44 0.7643 29.33 0.8201
DSRN 31.4 0.8332 28.07 0.7702 27.25 0.7241 25.08 0.7472 29 0.8897
LRFNet-S [7] 31.91 0.8901 28.44 0.7789 27.47 0.7334 25.7 0.7736 30.5 0.8991
EDSR 32.46 0.8968 28.8 0.7876 27.71 0.742 26.64 0.8033 31.02 0.9148
EIFG 32.49 0.8982 28.76 0.7721 26.82 0.7065 26.78 0.8145 30.22 0.8976
ProSR 32.61 0.8966 28.94 0.7881 27.79 0.7511 26.89 0.8211 31.22 0.9221
MSRN [64] 32.07 0.8903 28.6 0.7751 27.52 0.7273 26.04 0.7896 30.17 0.9034
RDN 32.47 0.899 28.81 0.7871 27.72 0.7419 26.61 0.8028 31 0.9151
RCAN+ 32.73 0.9013 28.98 0.791 27.85 0.7455 27.1 0.8142 31.65 0.9208
CARN 33.01 0.9211 29.81 0.8011 27.98 0.7522 27.51 0.8343 31.98 0.9402
SRGAN 29.4 0.8472 26.02 0.7397 25.16 0.6688 — — — —
ESRGAN 32.73 0.9011 28.99 0.7917 27.85 0.7455 27.03 0.8153 31.66 0.9196
Meta-SR — — 28.84 0.7872 27.75 0.7423 — — 31.03 0.9154
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but like other CNN-based models, it has the problem of being too
smooth and lacking details. The result of VDSR is very sharp, and
the overall image is very clear. Even the rightmost branch of the
image can be clearly restored, but misalignment will occur in the
details. The GAN-based model is dedicated to obtaining images
that match the look and feel of the human eye. Therefore, the
obtained images have good details and textures, but some locations
will be distorted. As the first method to apply GAN to the SR field,

SRGAN did not successfully resolve artefacts appearing at the
edges of the image. In the resulting image of ESRGAN, not only
artifacts are eliminated, but distortion is also reduced, but some
locations will have unwanted textures. In the test results of
complex scene images, similarly, DBI and DWT–BI have obtained
clearer results images than the original BI, but they and two
regularisation-based methods have limited ability to restore the
details of complex scenes, which are close to SRCNN and

Fig. 28௒ Test results for a simple texture image
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FSRCNN levels. Most of the CNN-based methods are smeared
(see Fig. 29). The CARN image is distorted in the details at the top
of the remote building. The restoration of the building's window
railings is also not good. The VDSR has rich details and can clearly
restore the window railings. However, because the picture is more
complicated overall, the effect of excessive sharpening is a bit
messy, especially at the branches. The result image based on the
GAN method is rich in details, but the distortion is more obvious in

complex scenes, and SRGAN still has strange artefacts. ESRGAN's
performance is still good, and even the details of the windows of
the remote building are restored. The disadvantage is still that some
locations will have unwanted textures.

Fig. 29௒ Test results for complex image textures
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7.4 Prospects and opinions

In view of the future development in the field of SISR
reconstruction, we put forward a few prospects here:

1. Design smaller models to maintain performance while
reducing run time. With the introduction of ResNet, the depth
of the network has been deepened again and again, while the
performance has been improved, it also has some problems,
such as excessive training time and excessive memory
consumption. Considering the future development in practical
applications, it is necessary to design a lightweight model that
balances performance and consumption.

2. Find the loss function that is most suitable for image super-
resolution reconstruction. Most of the loss functions used in
current image super-resolution reconstruction work are
inherited from previous work in other image fields. In practical
applications, the appropriate loss function is often selected
through experience. Therefore, finding a loss function
dedicated to image super-resolution reconstruction is of great
significance for improving model performance.

3. The BN layer is gradually deprecated in the SR field, and new
standardised technologies need to be proposed. BN has been
widely used in the image field as a standardised technology,
but its performance on SR is not satisfactory, bringing a lot of
memory consumption. In EDSR, the authors removed the BN
layer to improve model performance. Since then, the BN layer
has been gradually deprecated in the SR field. Therefore, new
standardisation technologies are needed.

4. Find more accurate image evaluation methods. This paper
introduces four evaluation indicators. Most CNN-based
methods use PSNR and SSIM as evaluation indicators. In the
work of SRGAN, it is pointed out that the images with high
PSNR are often too smooth and do not meet the real perception
of people. Therefore, the perceptual loss is proposed. So, there
is still no unified standard in actual research. Finding a more
accurate evaluation method to unify the evaluation standard is
very important for future work development.

5. Extend the application of SR in practical scenarios. Most of
the current SR-related work is based on the training of a large
number of paired data sets, which does not meet the
application requirements in actual scenarios. Therefore, in
recent years, many researchers have begun to propose some
unsupervised SR methods, which should also be a future
research focus.

6. Transfer from image super-resolution to video super-resolution
reconstruction. At present, a series of results have been
achieved in the field of image super-resolution. Researchers
have gradually turned their attention to the area of video super-
resolution. Compared with image super-resolution, video
super-resolution technology is more complicated. It not only
needs to generate frame-by-frame images with vibrant details
but also to maintain coherence between images. But at the
same time, it also has considerable application value and a
wide range of application scenarios.

8௑Conclusion
This paper studies the related work in the field of image super-
resolution reconstruction. Firstly, several evaluation indexes,
PSNR, SSIM, PI and RMSE of image super-resolution
reconstruction work are introduced. Then, according to the model-
based categories, the interpolation-based, regularisation-based,
CNN-based and GAN-based models are introduced, respectively.
Based on the SISR model of the interpolation method, we
introduce two more classic models from the interpolation method
and filter, respectively. The method of regularisation is mainly
introduced by introducing two models that add a regularisation loss
function, and then experimentally observe the texture and details
generated by the method. In the CNN-related models, since the
birth of the SRCNN, the depth of the CNN has become larger and
larger with the introduction of the ResNet network. In recent years,
researchers have pursued better performance while taking into

account the complexity of structures and algorithms, and a
lightweight network model presented. The GAN-based models do
not pursue a better PSNR than the CNN-based ones with
considering that the reconstructed image will be too smooth and
lacks detail. Therefore, it is proposed to apply the perceived loss to
the network to make the constructed image have excellent texture
and detail. However, the original model is prone to distortion and
accompanied by artefacts. ESRGAN eliminates artefacts by
removing the BN layer, which improves the perception overall.
Finally, we looked forward to the development prospects of SISR
reconstruction from aspects of model design, evaluation methods,
performance optimisation, and application development, and put
forward some opinions and suggestions.
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